Curr Protein Pept Sci. 2024 Dec 24. doi: 10.2174/0113892037335325241011162207. Online ahead of print.
ABSTRACT
Human paraoxonase 1 (hPON1) is a Ca2+-dependent metalloenzyme with multifunctional properties. Due to its diverse roles as arylesterase, phosphotriesterase, and lactonase, it plays a significant role in disease conditions. Researchers across the globe have demonstrated different properties of PON1, like anti-oxidant, anti-inflammatory, anti-atherogenic, anti-diabetic, and OPneutralization. Due to its pleotropic role in disease conditions like atherosclerosis, diabetes, cardiovascular diseases, neurodegenerative disorders, and OP-poisoning, it can be considered as a potential candidate for the development of therapeutic interventions. Attempts are being made in this direction to identify the exact role of PON1 in these disease conditions. Different approaches like directed evolution, genetic as well as chemical fusion, liposomal delivery of PON1, etc., are being developed and evaluated for their therapeutic effects in different pathological pathways. In this review, we outline the exact role and involvement of different properties of PON1 in the pathophysiology of different diseases and how it can be utilized and developed as a therapeutic intervention in PON1-associated disease conditions.
PMID:39722485 | DOI:10.2174/0113892037335325241011162207