Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling

Scritto il 03/04/2025
da Prabhsimran Kaur

J Neuroimmune Pharmacol. 2025 Apr 3;20(1):32. doi: 10.1007/s11481-025-10200-x.

ABSTRACT

Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.

PMID:40178648 | DOI:10.1007/s11481-025-10200-x